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Abstract

Acceptance of zero confirmation transactions in Bitcoin is inherently

unsafe due to the lack of consistency in states between nodes in the

network. As a consequence of this, Bitcoin users must endure a mean

wait time of 10 minutes to accept confirmed transactions. Even so,

due to the possibility of forks in the Blockchain, users who may want

to avoid invalidation risks completely may have to wait up to 6 con-

firmations, which in turn results in a 60 minute mean wait time. This

is untenable and remains a deterrent to the utility of Bitcoin as a

payment method for merchants.

Our work seeks to address this problem by introducing a novel in-

surance scheme to guarantee a deterministic outcome for transac-

tion recipients. The proposed insurance scheme utilizes standard Bit-

coin scripts and transactions to produce inter-dependent transactions

which will be triggered or invalidated based on the occurance of po-

tential doublespend attacks. A library to setup the insurance scheme

and a test suite was implemented for anyone who may be interested

in using this scheme to setup a fully anonymous and trustless insur-

ance scheme. Based on our test in Testnet, our insurance scheme was

successful at defending against 10 out of 10 doublespend attacks.
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Chapter 1

Introduction

Bitcoin is the world’s first peer to peer digital currency with a market capitali-

sation of 7B USD.1 Its distributed system supports and facillitates up to 270,000

transactions per day or 3 transactions per second. Bitcoin transactions are ver-

ified and enforced in a distributed manner with no central authority to mediate

disputes. As a consequence, each peer must download and synchronise its own

copy of the Bitcoin distributed ledger, commonly known as the Blockchain. Given

the distributed nature of Bitcoin, it is vulnerable to third party malicious attacks

and more often than not, users of the Bitcoin network who are not educated of

the technical intricacies of Bitcoin are often victims transactional exploits such as

doublespend attacks. Currently, there are no known methods to mitigate such at-

tacks, other than to wait for transaction confirmations, which is time consuming

as the expected mean wait time is 10 minutes for a single transaction confirma-

tion, but may take considerably longer. Thus, Bitcoin as it is in its current state

is not a feasible payment system for minimal-contact brick and mortar businesses

such as supermarkets, clinics, newsagents and restaurants as it is not reasonable

to expect a customer to wait around a checkout counter until a Bitcoin transaction

is confirmed.

1as of 9th May 2016 from http://blockchain.info
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1.1 Motivation

Bitcoin is a distributed network which follows an eventual consistency model for

the state of transactions. Therefore, there is non-determinism when it comes to

when a transaction actually gets confirmed. In the current state of Bitcoin, it

is possible for transactions to either get stuck or fail to get committed to the

Blockchain for a wide variety of reasons. Broadcasted transactions may fail to be

relayed by peers due to insufficient transaction fees. Reasons include overwhelm-

ing traffing, thus dynamically increasing the fee requirement for confirmation or

even accidental failures to relay said transcation. Alternatively, Bitcoin is also

vulnerable to doublespend attacks where a malicious user attempts to execute two

transaction with one transaction spent to an anticipating receiver, while another

transaction which spends the same coins are spent back to himself. Thus, leading

to the failure of verification of one of transaction by peers in the Bitcoin network.

These inconsistencies more often than not are difficult to observe in the Bitcoin

network as conventional peers are programmed to only connect to 8 outbound

peers. As a consequence, it takes time for a node to be able to synchronize its

state with the state of the Bitcoin network and it is possible for a node to be fed

malicious information which enables the attack to be successful.

Uptake in Bitcoin is also significantly impaired as it is difficult for merchants

to confirm Bitcoin transactions quickly. While the Bitcoin protocol has set the

mean block generation time to approximately 10 minutes, the block generation

time suffers from a high variance, thus it is often difficult to estimate how long it

will take for a transaction to be included in a block. Depending on transaction

volume in the Bitcoin network, it is also possible that should there be a surge

in transaction volumes, transactions may not be included in the next available

minted block as each block in the Blockchain are limited in size. Such shortcom-

ings are one of the core reasons why Bitcoin has yet been adopted as the payment

of choice for brick and mortar merchants as it would be infeasible to expect a

customer to wait at checkout until a transaction has been confirmed.
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Due to recent consensus rule changes, specifically Opt-In Replace By Fee [7],

there are concerns within the Bitcoin community that doublespending will be

easier as it is now possible to replace transactions. As the selection process for

transactions to be included in blocks cannot be enforced by consensus rule, it is

possible for profit-maximizing clients to ignore recommended transaction selection

policy and accept doublespend transaction as long as they maximise a miner’s

profit. Therefore, despite efforts by developers to reduce doublespend capabilities

in client distributions, it is still possible for advanced users who are aware of the

consensus rules of Bitcoin to augment their clients to accept or relay doublespend

transactions.

1.2 Goals

The purposes of this research is to reduce non-determinism in the commitment

of Bitcoin transaction in the Blockchain by utilising a robust zero-confirmation

transaction insurance scheme and a detection mechanism for participating insur-

ers to react to an unfavourable outcome. Robustness may be achieved by guar-

anteeing the succesful receipt of insured sum by the designated recipient of the

insured transaction, at the same time allowing timely intervention for an insurer

to attempt to mitigate the need to reimburse an insured recipient by performing

counter-actions within the Bitcoin network to encourage the confirmation of the

insured transaction as soon as possible. At the same time, another main objec-

tive is to also figure out the proportion of Bitcoin peers in the network that are

accepting a new type of transaction which allows replacement by incrementing

its transaction fee.

1.3 Contributions

The contribution of this thesis includes:

• Proposal of a novel zero confirmation Bitcoin transaction insurance which

guarantees a deterministic outcome regardless of different state outcomes.
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• Implementation of an insurance scheme and system which facilitates the

negotiation, setup and execution. As part of our commitment to the re-

quirements of the thesis, an evaluation and analysis of the system is also

presented as part of the thesis.

• Comparison of different contract transaction methods to execute insurance

scheme and its associated monetary cost.

• A survey on the proportion of Bitcoin peers accepting Replace-By-Fee

(RBF) transactions and a measure on the rate of propogation of a RBF

transaction compared to a standard transaction.

• An implementation of a Bitcoin monitoring software which enables arbitrary

transactions to be tracked. Detailed information such as proportion of nodes

reached within the network will be recorded and the propogation speed will

be measured.

1.4 Structure

In chapter 1, we will provide a thorough introduction of Bitcoin, providing the

necessary details for the reader to understand the underlying contructs of the

proposed insurance scheme. In chapter 2, we present our findings and discussion

on the acceptance of RBF-enabled transaction in both the Mainnet and Testnet

Bitcoin networks. In chapter 3, we present our insurance contract designs, fol-

lowed by a detailed description of the implementation and simulation of these

contracts in chapter 4. Finally, we end our thesis with a conclusion.
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1.5 Related Works

Bitcoin [14] was intially proposed and implemented based on a proof of work

scheme similar to Hashcash [3] and the idea of an untraceable digital currency [6].

Following widespread adoption and substantial review, Bitcoin improvement pro-

posals were introduced to improve the usability and extend the functionality of

Bitcoin [1][7]. Segregated witnesses [12] and normalized TXIDs [8] were proposed

to eliminate the potential of transaction mallaebility altogether by removing sig-

nature data from transactions. The effects of information propogation delay on

the scability of Bitcoin was examined by Decker et. al. and numerous suggestions

were made to reduce the delay time [9]. Due to the inherent capacity limitations

of Bitcoin, off-chain scalability such as sidechains [2], lightning network [16] and

duplex micropayment channels [11] were also introduced to increase the number of

transactions processable by the network at any given point in time. On-chain scal-

ability which involves augmenting the Bitcoin mining protocol which enables the

inclusion of orphaned blocks with an “uncle” relationship was also proposed [18].

Numerous studies contributed to the wide variety of attack vectors and model

against the Bitcoin network, specifically transactions Rosenfield’s work on Hash-

rate based double-spending proposed a probability model for the likelihood of

success of double spend attacks [17]. Bamert et. al. studied the viability of

accepting fast payments [4] (i.e. zero confirmation transactions) and presented

numerous suggestions on the methods to safely determine if a zero confirmation

transaction was safe to accept. Lei et. al. [13] presented a doublespend attack

vector which exploits temporal inconsistencies in transactional states between

peers. Transaction malleability [10] as a means to perform doublespend attack

and its effects on big businesses were also explored by Decker et. al.
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Chapter 2

Bitcoin

Bitcoin [14] is a peer to peer distributed payment system on a global scale without

a centralised intermediary. Coins may be minted and payments can be made

between two peers by means of broadcasting a transaction to the peer to peer

network. All of these are made possible through the enforcement of consensus

rules within the distributed network. To participate in the Bitcoin network,

each peer are free to deviate from the reference client, but its implementation of

custom policies must adhere to the Bitcoin protocol. Implementation of policies

with regards to transaction verification, block verification, creation of blocks must

adhere to protocol followed by the network. Failure to conform to the Bitcoin

protocol may lead to inconsistent states between peers, rejection of malformed

transactions and rejection of block announcements.

In this chapter, the technical details of Bitcoin will be presented to the reader

as a guide for the subsequent parts of the thesis. Firstly, we will talk about

how Bitcoin maintains its state. Secondly, we talk about how state changes (ie.

transactions) are formularised, broadcasted and verified by the Bitcoin network.

Finally, we present some critical consensus rules that are crucial to the work of

thesis.

6



2.1 Blockchain

The state of the currency used by the Bitcoin network, also known as Bitcoin

(BTC) is maintained with the use of a distributed data structure known as the

Blockchain. The Blockchain follows the structure of a directed tree and has no

central authority to govern read and write permissions to the data structure. It

is designed to be replicated by every other peer in the network and maintained

distributed by all peers. All future writes to the data structure are independent

verified based on a set of consensus rules agreed by the consensus network. There-

fore, the Blockchain data structure is Byzantine fault tolerant. The root node

of the Blockchain is known as the Genesis Block. It is the first block created to

initialise the Blockchain. A path to the Genesis Block can be found for all subse-

quent blocks that are appended to the Blockchain. Each block in the Blockchain

contains an intial transaction known as the Generation Transaction. This trans-

action is created to reward the miner that has discovered the proof of work for

the founded block. An exception is applied to the generation transaction in the

genesis block where the outputs of the transaction cannot be spent. The amount

of reward paid by the Generation Transaction is enforced by Bitcoin consensus

rules, therefore should a miner attempt to produce a Coinbase transaction which

pays more than the reward allowable by consensus, the newly discovered block

will be rejected by the Bitcoin network.

Block Suppose we denote B0 as the Genesis Block. We can formally denote

all descendent blocks of the Genesis Block as Bi, i > 0. Each block in Bit-

coin contains a blockheader which stores the value of the merkle root hash of

all transactions included in the block, the hash of the previous block header, a

nonce and etc.. We may formally express the dependency between each block

as Hash(Header of Bi−1) = Bi.BlockHeader.prevBlockHash. Figure 2.1 illus-

trates this dependency requirement enforcable by consenses rules. During the pro-

cess of mining, transactions are accepted and propogated continuously throughout

the network. As they cannot be immediately committed to the Blockchain, they

are stored in a data structure stored in non-persistent memory, known as the

mempool until they are included in a block by a miner.

7



Figure 2.1: Blockchain Structure

2.1.1 Mining

The proof of work scheme used in Bitcoin is modelled after the Hashcash proof

of work scheme, where the proof of work is a function which consumes a tuple of

a service string, a nonce and a counter as an input and produces a hash of the

input as an output. Similarly, in Bitcoin the service string is represented by the

information provided in the latest accepted block in the Blockchain. As the 4

byte nonce included in a header may be exhausted very quickly by a miner with

a hashing capacity of more than 4GH/s, an extra nonce field which is included

in the Coinbase to increase the total number of hashes made possible with a

set of blockheader information. The Coinbase is a special field which replaces

the signature script in a Generation Transaction. Miners use this transaction to

claim all mining fees, which by definition is the net difference between the sum

of output values and the sum of input values and a block reward which decreases

exponentially over time. As each Coinbase is unique between miners, we may

assume that each merkle root hash of a new block will be different. Therefore,

for every new transaction that is received, this merkle root hash is ever changing.

As a result of this, the block minting process features a memoryless property and

is considered a Poisson process.
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Discovering a solution for a proof of work to create a block is known as mining

and the process is inherently difficult as the blockchain is designed to be an im-

mutable data structure, therefore write privilleges to the blockchain is controlled

through the means of solving for a proof of work to gain write access. The proof of

work is computed by hashing the merkle root hash, the hash of the previous block

and a nonce until a hash with a certain number of leading zeroes has been found.

The requirement of the number of leading zeroes is determined by consensus and

is formally known as the network difficulty. The network difficulty is re-set each

time 2016 blocks are minted. The current targeted minting duration for 2016

blocks is set to 14 days, therefore should the network be able to mine 2016 blocks

in less than 14 days, the network difficulty will increase by the network. Oth-

erwise, the network difficulty will be lowered instead. Participation in mining is

voluntary for users of Bitcoin, however it is expected of users to maintain their

own copy of the blockchain to execute their own verification in order to enforce

consensus rules.

2.1.2 Forks

Occasionally, the Bitcoin may experience a network fork. A network fork is es-

sentially the splitting of the Bitcoin network as a whole into the total number

of forks that has occured in the blockchain. As minting may be modelled as a

Poisson process, it is possible for two or more blocks to be discovered concur-

rently. As both blocks get propogated to the network, nodes within the network

will either accept one block or the other depending on how effective either blocks

are propogated. The Blockchain only contains blocks that are successful pro-

ducing the longest chain of blocks. Blocks that are unsuccessful in producing

a descendent to maintain the status of being the longest chain become orphan

blocks. Transactions included in orphan blocks are thus invalidated as they are

no longer considered the sequence of events which has occured as recorded by

the Blockchain. As transactions in Bitcoin are mutually dependent, more often

than not, the invalidation of one transaction due to a Fork may need to a cas-

cading invalidation of subsequent future transactions. Figure 2.2 illustrations the

occurance of a fork in the Blockchain and how forks are eventually resolved.
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Figure 2.2: Blockchain Fork

2.2 Transaction

While the maintenance of the state of Bitcoin is executed through the use of

Blockchain, where each block in the Blockchain represents some state, Si of the

state of ownership of coins. A transaction is used to denote a state transition

from Si to Si+1 within Bitcoin, when executed by the Bitcoin network, applies a

state change. A transaction in a literal sense consumes a list of unspent outputs

from previous transactions and produces a new list of outputs. The execution

environment of Bitcoin may be interpreted as a higher order function which con-

sumes a state transiton function g(x), where g(x) ∈ Transactions. A transaction

can then be represented as a function f(x) which takes an input x ∈ UTXOSi

and outputs y ∈ UTXOSi+1
. Unspent transaction outputs (UTXOs) are outputs

from transactions that have not been used in transactions as inputs. The details

of the function itself is then defined by the execution steps expressed in the script

included in the transaction. Received transactions by peers in the network are

independently verified by consensus rules; whereas the selection policy to choose

the set of transactions to be included into a newly found block cannot be enforced

by consensus rules. We now define the components necessary to produce a valid

transaction for Bitcoin.
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Output An output in a transaction represents an ownership change for the

coins funded with the corresponding list of inputs within the same transaction.

An output consists of public key script (pkScript) and the value of coins transfer

to the designated recipient of the pkScript. An unspent output (UTXO) from a

transaction may only be used once as an input to another transaction as once an

unspent output is consumed by a transaction, its state is no longer maintained

by the Blockchain.

Input An input is a reference to an unspent output from another Bitcoin trans-

action. Each input consists of a signature script (scriptSig), a double hash of a

previous transaction, an index that points to the n-th output in the previous

transaction and a sequence number. ScriptSigs contain the claiming condition of

an output of a transaction and the signatures required to validate the claiming

conditions as speicified in the script component of the scriptSig. The SHA256

hash of a previous transaction is also used as a transaction identifier and it is used

in outputs when referencing a previous transaction. The previous transaction

that is referenced may be a confirmed transaction or it may be an unconfirmed

(zero-confirmation) transaction. A zero-confirmation transaction is a transaction

which has not been included in the Blockchain, but has been accepted to the

Mempool of the peers in the Bitcoin network.

Timelock A timelock-ed transaction in Bitcoin includes a time lock which pre-

vents a transaction to be committed into a block until the specified lock time

has elapsed. When a transaction is broadcasted prior to the lock time, said

transaction will be rejected by the network. Such a policy was introduced to

eliminate spam transactions that may exploit the use of timelocks in transactions

to overwhelm the Mempool of peers within the Bitcoin network.

Fees The difference between the sum of values of outputs and the sum of

UTXOs contributed by inputs is the fee to be paid to miners. A negative differ-

ence would result in a malformed transaction as there would be insufficient funds

to execute the transaction and a net difference less than the dust fee would also

result in the rejection of a transaction. In Bitcoin, the dust fee represents the

11



minimum transaction fee for each kilobytes of data used by a transaction. The

intrinsic value of a transaction fee is computed relative to the complexity of the

transaction itself. Transaction fees are evaluated on the basis of the combined

value of a transaction chain. As an unconfirmed transaction txi may reference

another unconfirmed transaction txi−1 which is broadcasted earlier to the Bit-

coin network, the transaction fee is computed on a per transaction chain basis,

as oppose to a per transaction basis, so as long as every transaction along the

transaction chain pays the minimum fee required to be accepted as it is a base

requirement to pay the minimum fee to qualify for acceptance.

A
Value: 0.9 BTC

Fee: 0.1 BTC

txi

B

Figure 2.3: Standard Transaction of user X paying user Y 1 BTC

Standard Transaction To reduce the incidence of malformed transactions

which inevitably consume network bandwidth, the network enforces the accep-

tance of standard transactions and rejects non-standard transactions. The stan-

dard transaction consensus rule requires that each broadcasted transaction must

contain one of two types of Public Key Scripts in its output. The two types

of Public Key Scripts are known as Pay-to-Pubkey-Hash (P2PKH) and Pay-to-

Script-Hash (P2SH) [1]. P2PKH scripts contain the hash of the public key of the

designated recipient of the output. P2SH Public Key Scripts allow a receiver to

provide a redeem script of its preference to a payer of a transaction. The P2SH is

calculated by hashing the redeem script produced by the receiver and is provided

to the payer for payment. P2SH allows a receiver to conveniently redeem the

outputs of the transaction by simply reproducing the same redeem script that

was used to produce the P2SH.

2.2.1 Child Pays For Parent (CPFP)

Child-pays-for-parent is a method at which a dependent transaction is used to

pay the transactions fees for both itself and a parent transaction it references.

12



CPFP is often used when the liability of transaction fee is shifted from the payer

to the receiver, thus the receiver may consume the output contributed by the

parent transaction to fund the receiving transaction and the transaction which

pays the transaction fee. Consider the situation where user A wishes to pay user

B 1 BTC, but is unwilling to pay any transaction fee. A can create a transaction

txi which pays exactly 1 BTC to user B where net difference in value between

the outputs and inputs is 0. For txi to be accepted by the Bitcoin network, txi

must be funded. Thus, user B may use CPFP to increase the value of payable

transaction fees to miners by consuming the output of txi to create transaction

txi+1 which then pays user B the net difference of the transaction fees and the

receiving value.

A
Value: 1 BTC
Fee: 0 BTC

txi

B
Value: 0.8 BTC
Fee: 0.2 BTC

txi+1

B

Figure 2.4: Child Pays for Parent Transaction

2.2.2 Replace By Fee (RBF)

Replace by fee (RBF)[15] is a transaction acceptance policy which allows trans-

actions that have already been accepted to be replaced by transactions that pay

higher fees regardless of its changes in inputs or outputs. A RBF transaction in

Bitcoin is created by setting the nsequence of the inputs of the transaction to less

than 0xffffffff. For each subsequent replacement, the payer may increment

the nsequence and pay a higher fee to replace a previous broadcasted transac-

tion. Figure 2.5 illustrates a simple RBF transaction. The input referenced by

both tx0 and txRBF refers to the same output from a previous transaction as

shown in the diagram.

2.2.3 Transaction Signing

Bitcoin transactions allow a spender to control the sections of transactions to

be signed. Signed components of a transaction are immutable, as any mutation
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A
Value: 1BTC
Fee: 0.1BTC

tx0

B

Value: 0.5BTC
Fee: 0.2BTC

txRBF

B

Figure 2.5: Replace by Fee Transaction

attempt will result in the change of the transaction hash. The different level of

control over components to be signed is determined by the SIGHASH type provided

to the signing function. A signed transaction includes its signatures in its scriptSig

and a corresponding SHA256 Hash is produced and may be used as a reference

for future transactions. However, a signature cannot sign the contents of any

scriptSig from any inputs as it is not possible for a signature to sign itself.

Signature Hash Types

• SIGHASH NONE when used will allow the spender to sign none of the outputs,

thus allowing Public Key Script and value of each output to be mutable.

However, all inputs are signed.

• SIGHASH SINGLE when used allows the spender to sign all inputs and a

single output where the index of the output to be signed must be equal to

the index of the input contributed by the spender.

• SIGHASH ALL when used allows the spender to sign all inputs and outputs,

putting the transaction in an immutable state. This is the default SIGHASH

operation used for most standard transactions.

• SIGHASH ANYONE CAN PAY when concatenated with any of the SIGHASH types

above allows the spender to only sign the input it contributes to a transac-

tion instead of including all inputs into the signing of the signature, allowing

additional inputs to be included in a transaction.
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2.3 Script

Bitcoin transactions typically require the spender of a transaction to fulfill a

set of conditions which is encoded in a sequence of bytes within a transaction

described in a language known as Script. The scripting language, Script is a

purposefully non-Turing complete, stack-based language that uses single byte

opcodes. Typically, when a spender pays a recipient some coins, the spender will

require a recipient to produce a redeem script which defines the set of conditions

the spender must fulfill in order to spend in future transactions. The redeem script

is then hashed to a Pay-to-Script-Hash (P2SH) to be included in the output of

the transaction. Should the recipient of the transaction elect to spend the output

received in said transaction, she would have to re-produce the script originally

used to produce the P2SH and provide the corresponding signatures required. The

signature and the script is then included in the input of the spending transaction

and sent to the Bitcoin Network for validation. Should validation be successful,

the spending transaction will be successful, otherwise, it will not be possible for

the recipient to spend the received coins.

Complex Redemption Conditions Script also allows users to set up complex

claiming conditions such as writing a transaction which pays to a shared account

held by multiple signatories. We call these transactions a M of N Multisig trans-

action, where M is the number of signatories required to sign a transaction and N

is the total number of registered signatories. For example, if we had a transaction

that has paid 2 BTC to a 2 of 4 Multisig transaction. In future, when spending

the output, only 2 of the 4 signatories will be required to sign the transaction

that will spend the output of the referenced transaction. Multisig transactions

are typically useful in cases where trustless and fair protocols are implemented.

They are used in micropayment channels, duplex payment channels, escrow-based

transactions and etc.

15



2.4 Transaction Finality

Bitcoin transactions do not get transaction finality as it is possible for a transac-

tion to be invalidated due the lack of strong consistency between peers in Bitcoin.

In this section, we explore how the lack of transaction finality is exploited by ma-

licious actors in the network and the state of the art methods to address the lack

of strong consistency.

2.4.1 Doublespend Attack

A doublespend attack is a deliberate attack by a malicious user to invalidate a

transaction that consumes the same inputs as the doublespent transaction. A

doublespend attack is often mounted to redirect the outputs of a broadcasted

transaction to the spender, which essentially is a chargeback against the recipient

of the transaction. Firstly, a malicious user may mount a doublespend attack by

producing a fork in the Blockchain with a block that includes the doublespend

transaction. The attacker must then mine on the branch which contains the dou-

blespent transaction and compete with the network to produce a descendent block

which will eventually allow the working branch to succeed as the main branch.

Secondly, an attacker may mount a doublespend attack by means of information

eclipsing [13] and exploiting the topology of the Bitcoin network. Such an attack

exploits the inconsistency in the state of Bitcoin attributed by information pro-

pogation delay within the network. For example, suppose we have a transaction

txi which spends the same output as txj and both transactions are broadcasted

at the same time by two distinct peers A and B. Finally, transactions in Bitcoin

are inherent replaceable as described earlier in section 2.2.2. A transaction txi

can be replaced with a subsequent transaction txi+1 if txi+1 pays a higher fee

than txi assuming miners in the network are incentivised only by the value of

transaction fees obtainable from accepted transactions.

Figure 2.6 illustrates a RBF doublespend attack that is executed after tx0 is

broadcasted to the Bitcoin network and prior to the commitment of tx0 in the

Blockchain. The doublespend attack enables user A to be able to doublespend

the unspent output to invalidate the original transaction and redirect the unspent

16



A
Value: 1 BTC

Fee: 0.1 BTC

tx0

B

Value: 0.9 BTC

Fee: 0.2 BTC

txRBF

A

Time

Figure 2.6: Doublespend attack by RBF

output back to herself.

2.4.2 Malleability Attack

A mallaebitility attack is executed by exploiting the malleability of transactions

in Bitcoin. As signatures in Bitcoin do not sign the contents of scriptSigs, it is

possible for a malicious actor to modify the contents of the scriptSig of a trans-

action without invalidating a transaction. Such an attack is effective against

transactions which form a series of chained transactions. For example, for a se-

quence of transactions txi+1 that are dependent on some transaction txi. Suppose

the input script of txi manipulated and does cause an invalidation, we denote the

manipulated transaction as txj. If txj was accepted instead of txi, this would

result in the invalidation of all subsequent transactions that are dependent on

the acceptance of txi as txj has successfully doublespend the UTXOs referenced

by txi. As a consequence of transaction malleability, it is often not recommended

to accept zero confirmation transactions. Segregated Witnesses is a recent pro-

posal [12] proposed to remove the claiming script and signatures from all future

Bitcoin transactions, thus eliminating the potential of transaction Malleability.

However, the proposed scheme will only work for wallet softwares that implement

the proposed scheme.
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Chapter 3

Exploring RBF Acceptance

In this chapter, we will present our findings on the acceptance of RBF transac-

tions within the Bitcoin network. The high acceptance rate of RBF transactions

enables us to deploy a pure RBF-enabled insurance scheme which would enable

significant savings when setting up the insurance scheme.

3.1 Hypothesis

It is well-known that only clients implementing protocol version v0.12 and above

will be supporting the acceptance of RBF transactions and this is already imple-

mented in the reference client. However, the acceptance of RBF transaction is

still left as a policy decision for the owner of nodes to decide whether or not to

accept RBF transactions. Furthermore, there exist various clients that deviate

from the reference client and it is unclear whether some of these clients support

the acceptance of RBF transactions.

Based on figure 4.1, assuming that every node which implements protocol ver-

sion 0.12 and above accept replacement transaction, we expect to see that at least

56.4% of nodes to accept RBF Transactions.
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29.4%

Satoshi 0.12.1 (1702)

15.9%

Satoshi 0.12.0 (921)

11.1%
Classic 0.12.0 (641)

13.1%

Satoshi 0.11.2 (756)

30.5%

Other (1768)

Figure 3.1: User Agents in the Bitcoin Network1

3.2 Method

The creation, signage and broadcasting of transaction requires a client to be run-

ning at all times. The Bitcoin reference client implements a daemon which is

connected to the network and responsible for all protocol level communication

pertaining to transactions and blocks. The reference implementation is also cou-

pled with a wallet implementation which keeps a set of private keys used to sign

and authorise outgoing payments. The wallet is also used to generate a Bitcoin

address which enables the wallet owner to receive funds. As the reference client

is intended to be run as a background process, the reference client exposes a

set of JSON-RPC interfaces which enables third-party clients to execute RPC

commands. The third-party clients may be executed locally or remotely. The

reference client also provides a default implementation of the RPC client, known

as bitcoin-cli, it implements the full set of RPC interfaces exposed by the

daemon.

To create a transaction in the reference client, the client wallet must be funded

with some Bitcoins (i.e. there must be one or more UTXOs that are spendable

by the set of keys held in the client wallet). The ingredients required to set
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up a transaction are a set of UTXOs, and a set of payment addresses and the

output values. To obtain the set of UTXOs spendable, the getunspentoutputs

RPC command can be invoked. Once the set of UTXOs have been found, we can

create simple non-replacable transactions with the unspent outputs tracked by the

wallet. Once a transaction is created, the UTXO consumed in the newly created

transaction will be marked as spent and it will no longer be possible to create new

transactions with the UTXOs. The reference RPC client implementation features

a set of convenience functions which allow a wallet user to create many types of

simple transactions. To create transactions with complex redeem conditions, it

will be necessary to create a raw transaction from scratch by manually specifying

creating inputs with the correct signature hash type and redeem scripts.

Currently, the creation of replacable transactions is not supported by the ref-

erence client although the reference client has begun supporting mempool re-

placement policies in the client daemon. As a consequence of this, to create a

replacable transaction, it is necessary to create a raw transaction. A raw trans-

action is created by specifying the list of inputs manually to be included in a

transaction and the list of outputs to be included in a transaction. To signal

replacability of a transaction, the nsequence field of an input simply has to be

set to an integer less than 0xffffffff. Once the transaction is created, it can

be signed with the signrawtransaction command and then broadcasted to the

network with the daemon by invoking the sendrawtransaction command. As

the creation of transaction manually does not account for fees, it is necessary for

the creator to invoke the estimatesmartfee command to get a rough indication

of the fee required to fund the transaction.

When transactions are broadcasted by the reference clients, only rejected trans-

actions will be accompanied with a reject message from the node rejecting said

transaction. Otherwise, if there is no response, it is assumed that the transaction

has been accepted by the node and will be relayed by the node to other connected

nodes. Transactions are relayed with the use of inv messages containing sets of

transaction hashes and block hashes. Once a node received an inv message, it

will check each entry in the message to check if any of the transaction or block
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is unknown to it. Unknown transactions or blocks may be queried against nodes

that contain information pertaining to them using the getdata message. The

response to getdata messages are tx and block messages. On receipt of tx mes-

sages, the node will process the transaction to check if there exist a conflicting

set of transactions will invalidate any transactions previously accepted. If there

is, the node will respond with a reject message to indicate that the transaction

is rejected by the node with the rejection reason. In the case of an accepted

transaction, the transaction will be stored in the mempool and relayed to other

connected peer in subsequent inv messages.

To create subsequent replacement transactions, due to the lack of support for

replacement transaction in the current client, it is necessary for the user to keep

track of the list of UTXOs used in the previous replacement transaction in the

event a newer replacement trasaction is to be created. This track set enables

the user to recreate a new replacement transaction which spends the same set

of UTXOs. Prior to creating a new replacement transaction to replace the older

replacable transaction, it is necessary for the user to explicitly invalidate the

previous transaction to be replaced by invoking the abandontransaction com-

mand. Once this is completed, the UTXOs used in the previous transaction will

be available for use again in the subsequent replacement transaction. Therefore,

to effectively measure the acceptance of replacable transaction, we must first

create, sign and broadcast an initial transaction which is marked as replacable.

Subsequently, to check if a node actually supports replacement transactions, we

then create, sign and broadcast the second transaction which spends the same

UTXOs as the first transaction. If no reject message is received, we can as-

sume that the node that has received the replacement transaction has effectively

accepted the RBF transaction.

3.3 Challenges

Measuring the acceptance of RBF transactions is difficult as there is no concrete

way of knowing that a RBF transaction has been accepted or rejected. While

we have discussed that it is possible to know that a transaction is rejected if a
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reject message was received in response to the sending of a tx message. The

option to reply with a reject message is a policy and not necessarily respected

by other client implementations. Another definitive method to is to query the

memory pool of connected nodes directly. But doing so periodically is not a

viable option as each mempool request to a reference client node will incur an

increase in banscore as a preventive measure against potential Denial of Service

attacks as the operation to query the memory pool is an expensive computational

operation. Furthermore, it is also left as a policy for clients to implement the

response to a mempool message. A client could easily respond with a subset of

the transactions in its mempool.

As Bitcoin is a fully distributed peer to peer system, it is impossible to be able

to reach every single node on the network as some nodes may have implemented

whitelisting and other networking policies. Nodes connecting behind a router

may also be impossible to reach due to network address translation as the route

to the host will not be possible to be worked out. Furthermore, as a consequence

of these reasons beyond our control, it is also difficult to obtain a reliable count

of current online nodes in the network.

The only way to test acceptance of RBF transactions is to send transactions

directly to nodes and see what is the response from the sending of the tx mes-

sage. As the set of transactions in Mempool is a policy, transactions that are

rejected due to conflicts may not be communicated to the sending peer. To ac-

tually know for sure if a transaction was formally accepted, it will be necessary

to send a direct mempool message which will increase the querying node’s ban

score. Transaction acceptance in Bitcoin must meet a minimum fee requirement,

therefore it will be necessary to spend Bitcoins to test the acceptance of RBF

transactions. The cumulative total for this part of the work is limited to 0.0271

BTC, which is equivalent to AUD 101. Given that the minimum transaction fee

on Mainnet is currently 0.00011558 BTC per KB2, and the size of each RBF

transaction is approxmately less than 1 KB, but for simplicity sake, we estimate

1effective 31st May 2016
2obtained using the estimatefee command from bitcoin-cli
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our transactions to be at least 1KB. We can only effectively test for 39 replace-

ment transactions, accouting for the necessity to raise fees for each subsequent

replacement transaction.

False positive measurements may also be made in the case where there is no

reject message response to a rejected transaction. Currently, for every tx mes-

sage that is sent and if there is no reject message which follows before a block is

generated and the RBF transaction is minted into the block, we assume that the

RBF transaction has been accepted by the node. However, this may not be the

case for the reasons we have discussed earlier and there is no way for us to check

for sure if a transaction has been rejected without an explicit reject message sent

from the target node. To counteract this problem, we can make a mempool query

request each time a RBF transaction is sent and there is no reject response.

However, there is still the case where the response to the mempool message may

not necessarily represent the complete set of transaction in the mempool of the

target node.

3.4 Implementation

Usage of the reference client to perform measurements is inadequate. Firstly, the

reference client is not designed to support the establishment of large number of

outbound connections, therefore it takes a long period of time to set up outbound

connections. On inspection of the source code, this is attributed to the fact that

outbound connections are executed in a single thread sequentially. Secondly, the

reference client produces a lot of noise as it is responsible for a responding to

the complete set of protocol messages. This makes analysis and data collection

difficult which led us to develop our own client, Bitwatch which implements a

subset of the Bitcoin protocol.

Bitwatch is a minimalistic client which implements a subset of the Bitcoin

protocol. It only responds to critical protocol messages which may trigger a

connection teardown if left unattended. Bitwatch also does not implement trans-

action verification as there is no implementation of the blockchain in the client.
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Therefore, Bitwatch must still run in parallel to a full node. Bitwatch can es-

tablish connections faster than the reference client as it simultaneously connects

to all known nodes concurrently. To reduce the noise attributed by exchanges of

protocol messages, Bitwatch does not relay blocks or transactions and it does not

send any messages unless absolutely required to maintain connectivity. As Bit-

watch does not maintain a blockchain, it is also unopinionated when it comes to

whichever transaction to accept or reject. Every transaction relayed to Bitwatch

will be stored in its mempool and the our customised mempool implementation

also supports the storage of conflict transactions to facilitate double spend mon-

itoring.

For the purposes of the thesis, Bitwatch was also customised to enable the

running of our RBF probing experiments. First, Bitwatch is enabled to connect

up to N peers. After N connections have been established, the initial transaction

is then broadcasted to all peers, followed by the RBF transaction. Between

the transmission of both transactions, there is a 10 second window to enable

transactions to propogate throughout the network before a RBF transaction is

broadcasted. After the broadcasting of the RBF transaction, a mempool message

is sent to probe the state of the memory pool on each connected peer. On return

of the inv messages, we check either the initial RBF-enabled transaction or the

RBF replacement transaction has been successfully accepted into the mempool

of the peer.

3.5 Results

Testnet As testnet connections were harder to obtain, we lowered the number

of connections for testnet to 80 connections. In our experiment, we ran two trials

and we have connected up to 118 unique peers running 18 different variants of

Bitcoin clients. The summary of our findings is detailed below:

Our findings in Testnet were inline with our intial hypothesis, where we ex-

pected most reference clients implementing protocol version v0.12 and above to

accept RBF replacement transactions. On top of that, all RBF doublespend
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Figure 3.2: RBF Transaction Acceptance in Testnet

transactions were eventually committed to the Testnet Blockchain, which worked

out just as expected. Most, if not all reference clients running on protocol version

0.12 and above accepted the RBF transaction which pays a higher fee than the

initial opt-in RBF transaction. On instances where transactions that did not

signal opt-in RBF were broadcasted, none of the RBF replacement transactions

were accepted, thus confirming that all nodes we have surveyed implemented the

correct behaviorial response for non opt-in RBF transactions. All nodes which

run on older protocol versions (i.e. v0.11 and below) only accepted the initial

RBF-enabled transaction and rejected subsequent RBF replacement transaction

which pays a higher fee just as expected. On specific instances, v0.12+ nodes

indicated that both initial and replacement transactions were accepted into the

mempool, which is an unexpected behaviour.

Mainnet For our mainnet measurements, we have configured Bitwatch to ac-

cept up to 200 connections for each trial. In our experiment, we ran two trials.

From both trials combined, we connected up to 374 unique peers running 28
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Figure 3.3: Mainnet RBF Acceptance with Classic Nodes

different variants of Bitcoin clients. The summary of our findings is detailed

below:

Our findings in Mainnet were also inline with our expectation despite a sig-

nifcant number of nodes rejected Opt-In RBF transactions or simply did not

respond to the mempool message we have sent manually to probe for the full list

of transactions accepted. On our Mainnet trials, we were also able to connect to a

significantly larger proportion of v0.12+ nodes which is above the representative

proportion as show in figure 3.1 indicating that v0.12+ nodes are signficiantly

more reachable than older nodes within the network. Removing all double re-

jection nodes, we can see that despite we have a large number of connections to

v0.12+ nodes, it is apparent that at least 20% of v0.12+ nodes disabled mempool

transaction replacement, thus in effect ignores higher paying RBF replacement

transactions. This alludes to an apparent deviation from expected transaction

acceptance policies on Mainnet and is the main cause of uncertainty of the even-

tual commitment of RBF transactions in the Blockchain as higher paying RBF
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Figure 3.4: Mainnet RBF Acceptance without Classic Nodes

Figure 3.5: Mainnet RBF Acceptance without Opt-In RBF Rejection Nodes
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transaction is not guaranteed to be selected despite paying a higher fee. Out

of 10 RBF Doublespend attempts we have conducted, we were only successful

at doublespending 1 out of 10 attempts which does not correlate to the propor-

tion of nodes who accepts RBF replacement transactions in our findings. The

only instance where a Doublespend RBF Transaction was successful was when

the transaction was minted by the Elligius Mining Pool. Therefore, we can infer

that major mining pools (i.e. BTCC, Antpool and F2Pool) do not mine RBF

replacement transactions and still operate based on the old First-Seen-Safe (FSS)

rules. The behaviour of v0.11 and below nodes were also inline with our expec-

tations and it is apparent that some nodes have applied a custom patch which

enables older nodes to accept RBF replacement transactions. A large proportion

of mainnet nodes have also indicated that they accepted both the initial RBF

enabled transaction and the RBF replacement transaction, thus it is difficult to

infer eventually which transaction will likely be committed to the Blockchain.

28



3.6 Discussion

Due to time constraints, we were not able to optimize the codebase for Bit-

watch to facillitate a much higher number of connections and it was not possible

to implement the complete set of RPC interfaces which would enable experiments

to be run at any time whilst Bitwatch was running. Despite using a batch con-

nection method, with each batch connection initiating 50 connections in parallel

everytime, most outgoing connection to nodes timedout despite set with a high

timeout duration of 5000ms. This problem was apparent in both Mainnet and

Testnet environments and we assumed that it was attributed to the most nodes

maxing out their maximum connection limit or were too busy to respond to our

connection requests.

We expected that all peers which utilize v0.12 (i.e. Satoshi v0.12++) and above

of the reference client or any peer which implements protocol version v0.12+

to accept RBF transactions by default. Furthermore, we also expected that all

peers below v0.12 would reject RBF transactions. Based on our findings, it is clear

that not all nodes running protocol version v0.12+ in Mainnet supports mempool

transaction replacement for opt-in RBF transactions as shown in figure 3.2, which

led to a significant non-determinism in the commitment of RBF transaction in

the Blockchain. We also intentionally excluded Classic nodes from our analysis

as the proportion of Classic blocks in the Blockchain is signficantly less than the

number of blocks minted with the reference client (i.e. Satoshi nodes)1.

Our method relies on the correct response of nodes to mempool messages, where

it is expected that nodes receving the message will respond with an inv message

containing the complete set of transaction hashes that is currently in its mempool.

As mempool information is meant to be kept private, it is left to the discretion

of the node owner to ensure the expected behavior was implemented for the

mempool message. From an outsider’s perspective, there is no way that we can

verify if the node has implemented the response we expect correctly, therefore

we expect that the results may deviate from the actual mempool content of the

1Proportion of Bitcoin Classic Blocks effective 1st June 2016 from http://xtnodes.com/
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probed nodes. Furthermore, it is unclear why there are incidence where nodes

returned that both conflicting transactions were accepted to its memory pool.

This could be attributed to an incorrect response implementation or the mempool

implementation has deviated from the reference client, where it is expected that

the mempool should only contain transactions it has decided to select to commit

to the Blockchain.

Despite the signficant variations in our measurements in Mainnet, we antic-

ipate that as node owners upgrade to Satoshi v0.12+, the acceptance of RBF

transactions will gradually increase over time as observed in our Testnet find-

ings. We can also conclude that right now, it is unsafe for payees to accept

zero confirmation transactions in Mainnet due to inconsistent transaction accep-

tance policies upheld by different node owners and mining pools, which further

highlights the need for an insurance scheme for zero-confirmation transactions to

provide a deterministic outcome guarantee for payees relying on the acceptance

of zero-confirmation transactions.
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Chapter 4

Bitsurance Contracts

In this chapter, we present Bitsurance, a novel approach to insure zero confir-

mation Bitcoin transactions. The insurance scheme is designed to increase the

probability of a definitive outcome for a receiver of an insured transaction regard-

less of the commitment outcome of said transaction in the Blockchain. Firstly,

we present the two designs for the insurance contracts, namely the RBF-Enabled

variant, currently only support by nodes running Bitcoin protocol v0.12 and

the RBF-Disabled variant which are supported by older nodes running protocol

version v0.11 and below which are currently used in the Bitcoin network by inde-

pendent participants. Finally we present an analysis of potential attack scenarios

and the game theory which justifies the effectiveness of the insurance scheme.

A standard transaction in Bitcoin typically involves a payer and a payee. As

Bitcoin transactions typically pay to an address which does not expose the iden-

tity of a recipient nor exposes the identity of a payer. Payers are incentivised

to doublespend transactions as there are no repercussions for doing so. In an

ecosystem where Miners are incentivised to include transactions which pays the

highest fees, it is always possible for a payer to doublespend a payment transac-

tion by doublespending the UTXO used to fund the payment transaction with a

conflicting transaction. To incentivse miners to select the conflicting transaction

in favour of the original payment transaction, a doublespender can simply pay

higher transaction fees. Ultimately, a rational and profit-maximising miner will

select the conflicting transaction to include into a minted block in favour of the
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original payment transaction. As a consequence of this, it is inherently unsafe

for a payee to accept zero-confirmation transactions in Bitcoin. To address this

problem, we propose an insurance scheme which insures the payment transaction

and guarantees a payout for the payee regardless of the eventual outcome of a

doublespend attack against the insured transaction.

4.1 Insurance Scheme

Our proposed insurance scheme, known as Bitsurance utilises Bitcoin transac-

tions to produce contracts in a trustless manner. A contract is a transaction

which is dependent on the eventual commitment of a set of transactions in the

Blockchain. Depending on the type of contract within the insurance scheme,

some contracts may share a mutual exlusive relationship where the commitment

of one contract would lead to the invalidation of other transactions. The insur-

ance scheme is composed of four main contracts and two transactions, known

as a Commitment Contract, Staking Contract, Insure Contract, Claim Contract,

zero or more optional Fee Bump Transactions for the RBF-Disabled variant and

finally a Payment Transaction.

4.1.1 Definitions

For all contracts and transactions described in the Insurance Scheme the following

notations apply:

• P denotes the Insured Sum. All our cases assume that the entire output

of the insured payment transaction is insured. However, this is not a strict

requirement of the scheme.

• Pr denotes the Premium payable to establish the insurance scheme. For

most of the contract transactions, the successful inclusion of the input fund-

ing the Premium is a requirement for any of the contracts to be successful.

Therefore, it is impossible for a payee to doublespend the Premium and

benefit from the insurance scheme concurrently.
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• F denotes the current transaction fee dynamically set by the Bitcoin net-

work. Depending on the amount of pending transactions that are waiting

to be confirmed, the transaction fee for new transactions is dynamic. For

simplicity reasons, we assume F is the same for all contracts regardless of

its redeem conditions. But in actual fact, the actual transaction fees would

be rise proportional to the complexity of the redeem condition.

4.1.2 Payment Transaction

By design, the insurance scheme requires that the input used to fund an insured

payment transaction to be referenced from a confirmed transaction. This is to

prevent a series of cascading invalidations that would result in the invalidation

of a payment transaction which will trigger a compensation payable by the in-

surer. This requirement can be waived if the unconfirmed transaction referenced

is insured by a similar insurance scheme, however an analysis of this is beyond

the scope of this thesis. The insurance scheme also prohibits the usage of RBF

transactions for the Payment Transaction, as each subsequent replacement would

result in change in the hash of the payment transaction (TxID). Changes in

the hash of the payment transaction would result in cascading invalidations of

linked transactions in the insurance scheme. While it is not strict to avoid RBF

transactions for the payment transaction, any replacement will be perceived as

a doublespend by the Insurer and will prompt countermeasures to be deployed

to incentivise miners to accept the original insured transaction over subsequent

valid replacement transactions.

4.1.3 Commitment Contract

The commitment contract is the first transaction that is created by an insuree

to initiate the insurance creation process. It is used for an insuree or recipient of

the payment transaction to prove that she is a recipient of a payment transaction

through the spending of the unspent output of the payment transaction. This

disallows either party to gamble on someone else’s transaction. The commitment

contract once created should be broadcasted to the network and may be inde-

pendently verified by an anonymous third-party insurer running a Full Node in
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the network.

Inputs The contract must contain one or more UTXO from payment transac-

tions to be insured and one or more UTXOs from confirmed transactions to fund

the premium and associated transaction fees to set up subsequent contracts. The

signature hash type for inputs in the commitment contract must be SIGHASH ALL

to ensure immutability. The nsequence field of the commitment contract should

also be set to 0xffffffff to opt-out of replacements. The combined sum of

the inputs should be P + 2F + Pr where P is the insured sum, F is the current

transaction fee for each transaction and Pr is the premium payable to the insurer.

Output The output of the contract should be payable to a multisig address con-

trolled by both the insurer and insuree. Essentially, by doing so, this guarantees

that the payee can no longer defraud the insurer by double-spending against the

insurer. The contract should contain exactly one output which pays P +F + Pr

to said multisig address.

Redeem Condition To cater for situations where an insurer may renege on

continuing with the insurance setup process, we can setup a complex redeem con-

dition which allows the insuree to spend the UTXO of the commitment contract

after the commitment contract is minted into the blockchain. If no subsequent

contract is minted, then it is fair to assume that the insurance scheme has yet

come into effect, therefore an insuree may withdraw from the insurance scheme.

To do so, a redeem condition allowing the insuree to spend the UTXO of the

commitment contract after N confirmations is added to the UTXO script. The

specific script to implement this redemption condition may be found in the ap-

pendix.

Issuing Party The commitment contract should be created and signed by the

insuree from information provided by an Insurer, then broadcasted to the Bitcoin

network. This contract should also be sent directly to an insurer, so she may

be able to set up subsequent contracts to complete the setup of the insurance

scheme.
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4.1.4 Staking Contract

Upon receipt of a commitment contract from an Insuree. The Insurer is obliged

to create a staking contract which reserves the insured sum for compensation in

the event of a successful double spend attack. The staking contract serves two

purposes within the insurance scheme. Firstly, it guarantees that the Insurer has

sufficient funds to compensate an Insuree in the event of a successful double spend

attack. Secondly, it prevents an Insurer from double spending the committed

insured sum against an Insuree. Thus, allowing the scheme to be a completely

trustless scheme.

Inputs The staking contract must contain one or more UTXOs from confirmed

transactions minted in the Blockchain. It is left as a policy decision for the insurer

to decide the confirmation threshold for the UTXOs referenced. The combined

sum of the referenced UTXOs must at least be greater than or equal to P +

F . The inputs of the staking contract must be signed with signature hash type

SIGHASH ALL with nsequence fields set to 0xffffffff.

Outputs The value of the output payable to the same multisig address as in

the commitment contract must be P with a complex redeem script. Any change

from the Input may be refunded back to the Insurer with a standard script.

Redeem Condition In the event no compensation is required to be made to

the Insuree, a complex redeem condition must be setup to enable the insurer to

spend the UTXO of the staking contract after the insurance contract is minted

into the blockchain. In the event that the insurance contract is not minted into

the blockchain as a consequence of a successful doublespend attack, the UTXO

of the staking contract will be used to fund the claim contract which is described

later. Therefore the redeem script should allow a 2 of 2 multisig spend during

zero confirmation state, so that the UTXO of the staking contract may be used

to fund the input of the claim contract. However, should the claim contract be

invalidated as a result of the successful inclusion of the insurance contract into

the blockchain, then the UTXO of the staking contract should be spendable by

the Insurer after N confirmation(s).

35



Issuing Party This contract should be created and signed by the insurer and

broadcasted to the network immediately. As a precaution, the contract should

be sent back to the Insuree as a proof of commitment by the Insurer.

4.1.5 Claim Contract

The claim contract is a transaction used by the Insuree to claim a compensation

in the event of a successful double spend attack. The claim contract requires a

locktime that is bound by the block height at CurrentBlockHeight + k + 1,

where k is the block at which the insure transaction or successful doublespend

transaction is commited. The claim contract may only be used after it is definitely

known that the insurance contract is invalidated.

Inputs The claim contract must contain the same referenced inputs used to

fund Pr + 2F in the commitment contract. This is a strict requirement as we

need to use these inputs to invalidate either contracts depending on the outcome

of the insurance scheme. The claim contract must also contain the UTXO from

the staking contract, this UTXO is used to fund P , which is the compensation

amount. All inputs must be signed with the signature hash type SIGHASH ALL

with nsequence field set to 0xffffffff.

Outputs This contract must contain an output which pays P to the Insuree

and an output which pays Pr + F to the Insurer.

Redeem Script There is no need for complex redeem conditions for the UTXOs

of this contract. A simple scriptPubKey is sufficient.

Issuing Party The Insurer is responsible for creating this contract. Upon

creation, the contract should be partially signed and returned to the Insuree

along with the staking contract and the insurance contract. Upon receipt by the

Insuree, the Insuree can then sign this contract which enables the spending of the

UTXO from the staking contract as the redeem condition for the UTXO requires

2 of 2 signatures before the script time lock expires.
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Figure 4.1: CPFP Insurance Contracts

4.1.6 Insurance Contract

An insurance contract is the transaction designated to pay the insured sum to an

insuree and the premium amount to the Insurer. This contract is also utilized for

the insurer to perform countermeasures against a potential doublespend attack.

By design, an insurer is incentivised to ensure that this contract is eventually

minted into the Blockchain to be best of her effort as this contract will invalidate

the claim contract once minted into the blockchain. The tradeoff of selecting

the CPFP design is that subsequent fee bump transactions must include a much

higher transaction fee which accounts for the fee bump transaction itself and

the increase in fee value of preceding transactions along the chain of referenced

transactions.

Inputs During creation, the insurance contract must contain the exact UTXO

from the commitment contract. For the RBF-Enabled solution, Inputs must be

signed with the signature hash type SIGHASH SINGLE | SIGHASH ANYONE CAN PAY

with the nsequence field set to a number less than 0xffffffff for future transac-

tion replacement with will be used to increase transaction fees payable to miners.
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Figure 4.2: RBF Enabled Insurance Contracts

SIGHASH SINGLE was specially chosen for the RBF-Enabled solution so that it is

possible for the insurer to include additional inputs in the event of an ongoing

doublespend attack, which in effect increases the transaction fees for the insur-

ance contract without invalidating the insuree’s signature. For the RBF-Disabled

variant, Inputs must be signed with only SIGHASH ALL.

Outputs This contract must contain exactly two outputs which pays P to

the insuree and Pr to the insurer. These outputs may be paid to a simple

scriptPubKey.

Redeem Condition No complex redeem conditions are required for any out-

puts in the insurance contract. A standard scriptPubKey is sufficient.

Countermeasures In the RBF variant of the insurance scheme, countermea-

sures are deployed by replacing this contract with a newer contract which pays

a higher transaction fee to miners. In the CPFP variant, countermeasures are

performed by appending fee bump transactions to the output which pays the In-

surer. For each CPFP depth increase, the fee included for each CPFP transaction
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must also increase by a factor of N , where N is number of fee bump transactions

chained to the insurance contract.

Issuing Party The insurance contract should be created and partially signed

by the Insurer. Once this is completed, this insurance contract should be sent to

the Insuree concurrently with the signed staking contract and the signed claim

contract. Once the Insuree has confirmed that the staking contract has been

broadcasted and accepted by the network and the claim contract is valid, the

Insuree may sign the Insurance Contract and return the insurance contract to the

Insurer. Simultaneously, the Insuree may also broadcast the Insurance Contract

to the network.
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4.2 Contract Lifecycle

The lifecycle of a contract is dependent on the eventual commitment of the depen-

dent transactions referenced by each contract. Formally, we may write that for

each of the input referenced in each contract transaction, the commitment out-

come of each contract is conditional on the successful commitment of the transac-

tions used to the fund said contract. We express this conditional requirements as

Commit(α)→ β, where Commit(α) is the minting of a set of transaction, α in a

newly appended block to the Blockchain. α is the set of transactions containing

the unspent outputs used to fund the inputs required in a contract transaction,

β. Therefore, for each contract, the validity of each contract may be expressed as

Commit(α)→ β where Commit(α)→ β evaluates to the validity of the contract

β. For each transaction, the set α is as follow:

• Commitment Contract - Let A be the set of payment transactions to be

insured and Commit(A) is the event at which the set of payment transac-

tions is committed to the Blockchain. Let B be the set of transactions used

by the payee to fund the Premium and transaction fees of the insurance

scheme. The insurance scheme asserts that B must be a set of confirmed

transactions, therefore Commit(B) yields true at all times.

• Staking Contract - Let C be the set of transactions used to fund the Insured

Sum and the transaction fee for the staking contract. Again, the Insurance

Scheme asserts that C must be a set of confirmed transactions, therefore

Commit(C) yields true at all times.

• Claim Contract - Transitively, the claim contract requires the set B and C.

• Insurance Contract - Again, by transitivity, the insurance contract only

requires the set A and B.

Figure 4.3 and 4.4 illustrates a scenario where a doublespend attack succeeds

and another scenario where an ongoing doublespend attack is successfully stopped

by the insurance scheme. Green coloured transactions and UTXOs indicates
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Figure 4.3: Failed Doublespend against Insurance Scheme

eventual commitment in the Blockchain, while red coloured transactions indi-

cates eventual invalidation. As illustrated in both figure, the insuree is always

guaranteed a payout of P regardless of whichever sequence of transactions get

committed to the Blockchain, while the Insurer is also always guaranteed to re-

ceive a premium, Pr.

In summary, we can observe that there are two contracts that are depen-

dent on a common output, which is the set B. Let TC denote the Claim Con-

tract and TI denote the Insurance Contract. Deterrence against a doublespend

attack requires that Commit(A) ∧ Commit(B) evaluate to true, allowing for

Commit(A) ∧ Commit(B) → TI to yield true. As the TC is a timelocked con-

tract, it does not matter if Commit(C) ∧ Commit(B) evaluates to true, as it

is only spendable after one block has been generated. With this relationship

between contracts established, we can also assert that at all times, an insuree

is always guaranteed P as Commit(B) ∧ Commit(C) always evaluates to true,

therefore Commit(B) ∧ Commit(C) → TC will always hold true, which guaran-
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Figure 4.4: Successful Doublespend against Insurance Scheme

tees that the insuree is always entitled to P regardless of the successful outcome of

a doublespend attack. Thus, simply by checking the result of Commit(X), where

X ∈ {A,B,C}, we can easily deduce if any contract in the insurance scheme is

in a valid state.
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4.3 Model

For the purposes of the insurance scheme, we assume thats miners in the Bit-

coin network will eventually adopt a generic mining policy which consistently

selects the highest yielding chain of transactions to be minted into discovered

blocks. Every participating member in the insurance scheme effectively attempts

to maximise their gains and the inherent trust model is that every party will

attempt to collude in the interest of maximising their gains. As Bitcoin is a fully

decentralised network, we assume that it is infeasible for neither participating

parties in the insurance scheme to be able to collude with miners to arrange pref-

erential commitment of transactions whilst selecting transactions to be minted

into discovered blocks. Collusion in this case is dangerous, most of the game

theoretic assurances of bitcoin break down in the case of collaboration between

miners and select participants in the network.

4.3.1 Doublespend Vectors

The payer-payee model describes a generic insurance for a payment transaction

that involves two parties, where one party is responsible for funding said trans-

action (i.e. Payer); while the other is responsible for receiving the funds involved

in said transaction (i.e. Payee or Insuree). The generic transaction is the target

transaction to be insured by a third party insurer. In this model, there are three

possible doublespending scenarios.

• Payer doublespends Insured Sum against Payee. In this doublespend case,

the insurance scheme is designed to prevent this from happening at the first

place, therefore this case is covered.

• Insuree doublespends Premium against Insurer. With the design of the

insurance scheme, the claim contract and the insurance contract are the

contracts that provide a payout of the insured sum back to the Insuree. As

both of these contract require the Premium as an input, an Insuree is never

incentivised to doublespend the Premium against the Insurer.

• Insurer doublespends Insured Sum against Insuree. The production of the
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claim contract requires that the staking contract be broadcasted and ac-

cepted by the network. As a security measure, the Insurance Scheme re-

quires that the Insurer pay the inputs used to compensate the Insuree into

a multisig address. While this is not completely secure method of deterring

a doublespend mounted by the Insurer, it makes it somewhat harder for an

Insurer to doublespend the promised insured sum. If the Insuree is con-

cerned about the doublespending by the Insurer, the Insuree could again

insure the claim contract which ultimate guarantees the payout of the claim

contract.

4.3.2 Doublespend Analysis

As shown in figure 4.5, there are two possible states for the insurance scheme to

be in at any point in time after the successful setup of the insurance contracts.

The insurance scheme does not take into account the double-spend risk beared

by the insuree as it does not concern the insurer until all contracts are setup.

Let α denote the event where all contracts are setup and the refund contract is

broadcasted to Bitcoin network. The two states which follows after this event is

the safe state, denoted S, where the refund contract will eventually be minted

into the block and subsequently committed to the Blockchain. The attack state,

denoted A represents the state at which a transaction which doublespends the

payment transaction will eventually be minted into the block and subsequently

commited to the Blockchain. E1 represents an action undertaken by an attacker

which incentivises miners in the network to accept the double-spend transaction

in favour of the refund contract. While E2 represents an action that counteracts

E1 leading to the eventual acceptance of the refund contract in favour of the

double-spend transaction. At any point in time, either state may be accepted

pending the discovery of a block and whichever transaction is most lucrative for

a miner to mint into the block.

The discovery of blocks for Bitcoin (i.e. Proof of Work) is a Poisson process.

Therefore, the time difference between each block may be modelled as a inter-

arrival and waiting time distribution (i.e. exponential distribution) with a mean
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αS A

E1

E2

Figure 4.5: Finite State Machine for Transaction Insurance

time difference between the discovery of blocks of approximately 10 minutes as

proposed in Satoshi’s original paper on Bitcoin and further re-affirmed by Decker

et. al. Therefore, we may express X ∼ E(1/600), where X denotes the random

variable representing the time between the discovery of some block, Bi and the

preceding block, Bi−1. If we approximate the time needed for each action E2 to

be approximately 20 seconds1.

P (X ≤ t) = 1− e−λt, λ =
1

600

P (X ≤ 20) = 1− e−( 1
600

)20

P (X ≤ 20) = 0.0327839

Assuming that an insurer may react immediately to a double-spend attempt,

but accounting for propogation delay of countermeasure transactions provides us

with the probility of success of a double spend attack P (X ≤ 20). Therefore,

the expected loss of an insurer is bound to be IS × P (X ≤ 20) where IS is the

value of the insured sum which the insurer can easily charge back to an insuree

to offset her potential losses.

In reality, both the double-spending party and the insurer have finite resources.

Therefore, it is impossible for an attacker to attempt a double-spend by staking

an infinite amount of Bitcoins as transaction fees to beat an insurer. Assuming

1based on 90th percentile propogation from Decker’s bitcoinstats.com
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that a malicious payer is motivated by maximising the net difference between

the payment amount and fees attributed to double-spending by creating a higher

paying transaction, the maximum amount a malicious payer would spend is also

equal to the payment amount less double spend fees. Therefore, so as long as

an insurer takes more than the payment amount less the double spend fees, it

is always possible for an insurer to succeed in beating the malicious payer. In a

scenario where a payer and payee are colluding to defraud the insurer, the situa-

tion becomes less favourable to the colluding party as the maximum amount that

may be used to double-spend profitably is further reduced to the net difference of

the payable amount less the transactions fees and cost of premium. Therefore, in

both cases, so as long as an insurer has a staking amount of 2× IS, the Insurer

will always be in a position to beat a malicious double-spender.

Game Theory The double-spend action by a malicious payer and counter-

measure reaction by an insurer may be modelled as a game and we can repre-

sent the eventual outcomes in a payoff matrix. The values in the game matrix

represents the expected outcome of an action undertaken by both insurer and

malicious payer. In this game, the payee is excluded as the insurance scheme in

effect transfers all systematic risk associated with double-spends from the payee

to the insurer. In the following payoff matrix, Player I denotes the insurer of the

payment transaction, Player DS denotes a malicious payer attempting to double

spend an insured payment transaction. S is the sum of the outputs in an insured

transaction. F denotes the transaction fees payable by the payer to fund the

payment transaction and P is the premium payable by the payee to insure the

payment transaction. Assuming that a payee always insures a transaction where

the payment sum is always larger than the transaction fee and the payment sum

is always larger than the premium amount, we can further apply a contraint to

the value of the variables S > F and S > P .

As we can see from the payoff matrix in the non-colluding case, the nash

equilibrium is always a double spend attack by the attacker regardless of whether

an insurance scheme is in place and the insurer’s dominant strategy is to always

react with counter measures. This is always the case because the maximum bound

for the transaction fees to be spent by a malicious double-spender is less than
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Player I

CM ∼CM

Player DS
DS (0.0328S − 2F, P − S + 2F ) (S − 2F, P − S)

∼DS (−S − 2F, P ) (−S − 2F, P )

Table 4.1: Payoff Matrix for Non-Colluding Payer-Payee against Insurer

S−2F , for her to effectively make a profit from the doublespend attack. Therefore

an insurer will always have to spend a maximum of S − P − 2F , which incurs

an out of pocket expense less than S − 2F to mount a success counter-measure

against a malicious double-spender. By subscribing to an insurance scheme, a

payee is always guaranteed an outcome of S − 2F − P at all times.

Player I

CM ∼CM

Player DS
DS (0.0328S − 3F − P, P − S + 3F ) (S − 3F, P − S)

∼DS (−S − 3F − P, P ) (−S − 3F, P )

Table 4.2: Payoff Matrix for Colluding Payer-Payee against Insurer

Similarly, the same calculations will apply for the case of a colluding payer-

payee model. The only difference this time is that the maximum spendable sum

for double-spend attack is further reduced to less than S−3F−P as the colluding

payer-payee may be considered as a single entity. This effectively allows an insurer

to spend up to a maximum of S − 3F − P to defend against a malicious dou-

blespend. Therefore, in both cases, we have successfully demonstrated that the

dominant strategy for the game would effectively stem out possible double-spend

attacks and the maximum staking amount for countermeasures is bounded, effec-

tively enabling an insurer to effectively defend against malicious doublespends.

Payer

DS ∼DS

Payee
I (S − P − 2F, 0.0328S − 2F ) (S − P − 2F,−S)

∼I (−S, S) (S,−S)

Table 4.3: Payoff Matrix for Payer-Payee with and without Insurance

While it is apparent that the insurance scheme does not fully deter a double-
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spender from doublespending an insured transaction, it is still imperative that a

payee has access to an insurance scheme as shown in Table 4.3. As we can see

from our analysis of the payoff matrix with the payee subscribing to an insurance

scheme and without subscribing to an insurance scheme, it is always the case that

a payer will always doublespend and a payee will always be insuring a transac-

tion in the case of accepting zero-confirmation transactions. The top-left case is

the nash equilibrium as both parties will attempt to maximise their gains from

each other’s actions, therefore we can assume that if every actor in the network

are profit maximising agents, it is plausible to assume that every recipient who

chooses to accept zero-confirmation transactions will eventually be attacked with

a double-spend attack assuming that 0.0328S > 2F
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Chapter 5

Bitsurance Implementation

To execute the Bitsurance contracts presented in the previous chapter, we imple-

mented a library of the insurance contracts which setups the contracts required

for the insurance scheme on demand. Due to time constraints, we were not able

to implement the entire insurance scheme as an independent service. The library

implementation enables any interested party to setup an insurance service based

on the proposed scheme. A test suite is also included to guarantee the correct

implementation of the complete scheme.

5.1 Method

Our library implementation was done in Python with the use of the python-

bitcoinlib. The library used exposes an API interface which enables us to create,

sign and broadcast transactions. It is important to note that deployment of

the insurance scheme with the reference client is not recommended as the refer-

ence client is not designed to facilitate many outbound connections and it does

not track current UTXOs that are in zero-confirmation state. Our test suite

currently covers all possible scenarios where either party participating in the in-

surance scheme may be honest or dishonest. Therefore, in totality there are 9

combinations of scenarios which are all covered by our regression test cases.
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5.2 Specification

5.2.1 Premium Calculation

Premium calculation is left as a policy decision for any Insurer who decides to

provide an Insurance Service. As a minimum, an Insurer providing Bitsurance as

a service should charge a premium which compensates for the expected value of

compensations as a result of successful doublespend attacks. Based on the model

we presented in the previous chapter, we estimate this value to be approximately

0.003∗P , where P is the payment sum expected to be received by the Insuree. As

an example, assuming that a payer has paid a payee a sum of 1 BTC, the premium

payable to insure this transaction will be 0.003 BTC to offset the expected value

of successful receipts from doublespend attacks. This is also the default premium

calculation formula provided by our library implementation.

5.2.2 Proposed Contract Exchange Protocol (CEP)

As Bitsurance is a trustless scheme which guarantees that neither party is capable

of defrauding each other, the exchange of contracts must be executed in a specfic

order. This order of contract exchange is dictated by the Contract Exchange

Protocol (CEP). The sequence of steps to execute CEP is as follow:

1. Insuree sends Commitment Contract to Insurer. Insurer then checks the

inputs of the Commitment Contract. Requirements for the inputs were

previously described in Chapter 3.

2. Insurer produces Staking Contract which commits the UTXOs required to

compensate the Insuree in the event of a successful doublespend attack.

The staking contract is then signed and broadcasted to the network, then

sent to the insuree. At the same time, a partially signed claim contract is

also returned to the Insuree in the same message.

3. The insuree checks the received staking contract and claim contract. Once

she is satisfied with the validity of the both contracts, she can broadcast

the insurance contract which effectively initiates the insurance scheme. The
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insuree is always guaranteed to collaborate as the disincentive to not col-

laborate would be a delayed claim payout due to the claim contract time

lock.

5.3 Results

Due to the current diverse set of mining policy in Mainnet, we have decided

to test our insurance contracts in Testnet instead as the mempool replacement

behaviours in Testnet is significantly more predictable and is in line with our

model. Using our insurance contracts, 10 of 10 RBF doublespend attempts were

successfully deterred with the insurer commiting P − F to raise the transaction

fee of the insurance contract, where P is the insured sum and F is the transaction

fee that was paid by the payer to fund the insured payment transaction.

The following are the steps undertaken to execute the test:

1. First, we ensure that our wallet had 4 UTXOs to facilitate the setup of the

insurance scheme.

2. Secondly, our test script written in Python was executed which setups all

the contracts required to setup the insurance scheme.

3. Finally, we broadcasted a replacement transaction which is aimed at replac-

ing the payment transaction with a signficantly higher fee, followed with a

countermeasure funding into the insurance contract.

5.4 Challenges

Exchanging messages between clients in the internet requires time. Assuming an

average round-trip time of 100ms for each exchange, the CEP protocol requires

a cumulative total of 300ms to set up the complete insurance scheme, exclud-

ing complications associated with transaction propogation delays in the Bitcoin

network. During the exchange process, the insuree is unprotected as long as the
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insure contract has not been broadcasted to the Bitcoin network, therefore an in-

surer could easily backout of the entire insurance setup process if a doublespend

attack was discovered during the setup phase.

Nodes in the network are not homogeneous in reality as different nodes may

implement varying transaction acceptance policies and their hashing power is

unevenly distributed between every peer in the network. Therefore, without an

effective probe to measure the distribution of hashing power, it will be difficult

to model the preference of accepted transactions, which affects the ability to

calculate an accurate premium value to charge to insurees.

5.5 Future Improvements

As it stands now, there is little incentive to continue for a full implementation of

the insurance scheme as there is no incentive to do so until such time miners in

Bitcoin Mainnet elect to mint transactions which pays the highest fees, which we

anticipate will happen in the long run as mining rewards gradually diminish and

main source of income for miners is simply transaction fees.

Due to time constraints, we were not able to fully implement Bitwatch accord-

ing to our initial design specifications. Without Bitwatch, it will not be possible

to deploy a full insurance service as it is essential to have a custom built Bit-

coin node which tracks all current UTXO sets at all times. In our test runs, we

were only able to perform doublespends in a controlled setting where each dou-

blespend was immediately addresses with a corresponding countermeasure sent

immediately to the network. In reality, it will take time for a monitoring node

to notice a doublespend attempt and this duration should be studied in future

research.

Our current proposed insurance scheme requires that an absolute lock time be

specified well ahead of time, therefore it is necessary to set the locktime to an

arbitrary time into the future. This is ineffective as it is difficult to predict when

a preceding contract will be committed into the blockchain. This can potentially
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be addressed in the future once the the BIP112 soft-fork [5] is complete. This

BIP formally introduces a new opcode, OP CHECKSEQUENCEVERIFY which enables

relative time locks to be set. This is particularly useful to ensure that a claim

contract is well-embedded in the blockchain for a specific block depth before a

reimbursement transaction is broadcasted to claim the outputs from the claim

contract. The advantage of using this as oppose to OP CHECKLOCKTIMEVERIFY is

that the claim contract now has to be strictly N blocks apart from the reimburse-

ment contract, which guarantees that an insurer is well-guarded against potential

forks in the blockchain.

More study about the mining selection policy in the form of a formal survey

with mining pools in the network will need to be conducted to be able to create a

model that can more accurately model the potential acceptance of RBF-enabled

replacement transactions. As it is right now, it simply a dice roll as to whether

a RBF-enabled replacement transaction would be included in the Blockchain as

it really depends on which mining pool was successful at generating a block to

include said transaction. While our insurance scheme covers a recipient in both

cases, due to the uncertainty of transaction acceptance, it is unlikely that there

will be any insurance providers that will be willing to take up these hidden risks.
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Chapter 6

Conclusion

In this thesis, we have developed a novel solution to support safe acceptance of

zero confirmation transaction with deterministic guarantees which caters for any

possible outcome of a doublespend attack against an insured transaction. We

then proceeded to analyse the feasibility of the proposed scheme by measuring

the rate of acceptance of RBF transactions by the network by deploying probe

RBF transactions to identify the proportion of nodes that have accepted them.

Furthermore, we also executed several doublespend RBF attacks on both Mainnet

and Testnet.

Mining policy is inherently a private decision to be decided by miners in the

Bitcoin network and based on our findings it is apparent that the majority of

miners in Mainnet (i.e. F2Pool, Antpool and BTCC) implements the old First-

Seen-Safe (FSS) acceptance policy which disregards higher paying replacement

transactions. We anticipate that this situation will change in the long run as

miners move to maximise on their transaction fee receipts and adopt mempool

replacement policies which enables the preferential mining of higher paying trans-

actions.
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